【三年26】专题20不等式选讲

2022年全国甲卷】

1.已知abc均为正数,且eqId6b9450af43c88e8e7f8075d0cf067a6c,证明:

(1)eqIde0506df6a901b68affeea51ffc59604e

(2)eqIdda8607bde1fa6cde631a46e921d959a0,则eqId286419c5a4690f44355fcaa16ca961b7

【答案】(1)见解析

(2)见解析

 

【分析】(1)方法一:根据eqId06abbf4536bcf150c4515c8cf7126200,利用柯西不等式即可得证;

2)由(1)结合已知可得eqIdbf00dff7334bb1bfa933b37269281690,即可得到eqId7ba4847182e2a1bd7d44685246ad2c8a,再根据权方和不等式即可得证.

【详解】(1[方法一]:【最优解】柯西不等式

由柯西不等式有eqId816b8e929ed660dead9b4e7011e3de06

所以eqIde0506df6a901b68affeea51ffc59604e,当且仅当eqId05bb9201dc94286d59d8580a9b422e31时,取等号,所以eqIde0506df6a901b68affeea51ffc59604e.

[方法二]:基本不等式

eqId48fe5d9cbe4f83926f5c21912df67a2eeqIdedc9f3ee5d118982e17a188bdd001b72eqId18076e087fce160998f94c0128429ce6eqId5efd8f15bd0f7c1ae01366576d5ba228

当且仅当eqId05bb9201dc94286d59d8580a9b422e31时,取等号,所以eqIde0506df6a901b68affeea51ffc59604e.

2)证明:因为eqIdda8607bde1fa6cde631a46e921d959a0eqId94440d3e4c073f94f2b266ff99d50e74eqId67ca5fd57c2c2fcc3c7a574fdd1467d9eqId8cec12441802f71e803efaf2c62ee588,由(1)得eqIdbca8b9d47338215b2296ce8f21e0d0dd

eqIdbf00dff7334bb1bfa933b37269281690,所以eqId7ba4847182e2a1bd7d44685246ad2c8a

由权方和不等式知eqIdfa4e7d234602db23ceff34a324a9e2a0

当且仅当eqId42edab8affcf57f97dfa8198729444d2,即eqId0b550ee821ee1838384835e81fc34b67eqIdb83fac7c530f31d7079f052c200c56cd时取等号,

所以eqId286419c5a4690f44355fcaa16ca961b7.

【点睛】(1)方法一:利用柯西不等式证明,简洁高效,是该题的最优解;

方法二:对于柯西不等式不作为必须掌握内容的地区同学,采用基本不等式累加,也是不错的方法.

 

2022年全国乙卷】

2.已知abc都是正数,且eqIda22aec2d6c2dcfc8416297e4c8e7f4a3,证明:

(1)eqIdf34947cb31786b794360311e42649b77

(2)eqId52da84d12e99bf0c95bd8a801c3d76ab

【答案】(1)证明见解析

(2)证明见解析

 

【分析】(1)利用三元均值不等式即可证明;

2)利用基本不等式及不等式的性质证明即可.

【详解】(1)证明:因为eqId94440d3e4c073f94f2b266ff99d50e74eqId67ca5fd57c2c2fcc3c7a574fdd1467d9eqId8cec12441802f71e803efaf2c62ee588,则eqId582a613328026171a8f0e77bda10fabaeqIde3da02408cf601277a3cd91de3f8f633eqIdfffa4065011aefd805b52af341d8d30d

所以eqId0c76d9012b57dd49956d285051ff4663

eqIda96f192d60b786e6a7c1f343dc6a25b0,所以eqIdf34947cb31786b794360311e42649b77,当且仅当eqIddb31ecc6ae730c42972ed5a9a5d7ffb4,即eqId9fa78783bbd67b8d99ba4fa4043ac157时取等号.

2)证明:因为eqId94440d3e4c073f94f2b266ff99d50e74eqId67ca5fd57c2c2fcc3c7a574fdd1467d9eqId8cec12441802f71e803efaf2c62ee588

所以eqId0b5a92a71f004adb655116942d445fe0eqId5ace06fb3aff0ee42aa8d2b94de2a3f1eqId759c09917e5728d75bf5cfdb5b4a807f

所以eqId4780409d37849820e7fa49dab4ddb000eqId71cc6525cd77d9ee8f614e05df67c696eqIde8031c13f5f9420cbbb596ca6685edbc

eqIde51b9b6b635bf90091ef21375451aa2a

当且仅当eqId44acc0ee22dc4b7750e8be825e7c1355时取等号.

 

2021年甲卷文科】

3.已知函数eqId17791db6ea9ababc02d91271f1445e06

1)画出eqId942c2141d01bde6b48210c56a17fc75eeqId1938c093dd2fbcb752d0eb7a18d143b2的图像;

2)若eqIdab762b6f9b93fb4acd74b2128939c304,求a的取值范围.

【答案】(1)图像见解析;(2eqId30345053515b7f0a9e9a3a1913b985eb

【分析】(1)分段去绝对值即可画出图像;

2)根据函数图像数形结和可得需将eqId942c2141d01bde6b48210c56a17fc75e向左平移可满足同角,求得eqIdbf4fcb96325645071888ff481e0c76edeqIda3935e746bb1c08210a227bfcc7d991feqId0a6936d370d6a238a608ca56f87198de的值可求.

【详解】(1)可得eqIdb51d2785e6feb7e316fa1786e542ed36,画出图像如下:

eqId1d54efab78d97cb8b5ef44e045b337b5,画出函数图像如下:

2eqId93ebc9799175b97b1454e794ccb7265d

如图,在同一个坐标系里画出eqIdf8fd1e808e015f4cb43d2e3a0529ac6a图像,

eqIdbf4fcb96325645071888ff481e0c76edeqId942c2141d01bde6b48210c56a17fc75e平移了eqId2f8d40e257f9c446b8e30fa841b74bbd个单位得到,

则要使eqId76ec6af6118d005c38685e52684f1893,需将eqId942c2141d01bde6b48210c56a17fc75e向左平移,即eqId94440d3e4c073f94f2b266ff99d50e74

eqIdbf4fcb96325645071888ff481e0c76edeqIda3935e746bb1c08210a227bfcc7d991f时,eqId8cc37532cfb5b806e8de1eaea6c5cd0c,解得eqIdef6bf222fc086fcd9de8d3c6fec6291feqIda22e82ffaf4d1ed342a8a0e7b76fd133(舍去),

则数形结合可得需至少将eqId942c2141d01bde6b48210c56a17fc75e向左平移eqIda41354372ccb7c514380a0b70d97aa08个单位,eqId04547d04283abccd6a75a4aecd5a0873.

【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.

2021年乙卷文科】

4.已知函数eqId30378d8b1176a850526c8997b8663815

1)当eqId0b550ee821ee1838384835e81fc34b67时,求不等式eqIdd2a8a9f4f0d6590de86becb733bd1b6b的解集;

2)若eqId0abd3adfab8eed16e2c302b4f11fe869,求a的取值范围.

【答案】(1eqId8736495798af4d607c0bfdf9e5643b4f.2eqId5577750d99b63cdc991795338c38f0bb.

【分析】(1)利用绝对值的几何意义求得不等式的解集.

2)利用绝对值不等式化简eqId0abd3adfab8eed16e2c302b4f11fe869,由此求得eqId0a6936d370d6a238a608ca56f87198de的取值范围.

【详解】(1[方法一]:绝对值的几何意义法

eqId0b550ee821ee1838384835e81fc34b67时,eqIdf12f04740cecfbe3d1fa67ecb059372deqId232b9d0d7b7df068be770f5018cfd692表示数轴上的点到eqIdbdaa19de263700a15fcf213d64a8cd57eqId81fb134b2b48acc99213fff6ccfee65f的距离之和,

eqIdd2a8a9f4f0d6590de86becb733bd1b6b表示数轴上的点到eqIdbdaa19de263700a15fcf213d64a8cd57eqId81fb134b2b48acc99213fff6ccfee65f的距离之和不小于eqId6f8c4c029e552954bd493b49aeab82d5

eqIda089c207e39a24d0d82aa853ac2bbb8ceqId707ea658f3a9359f5740d5aab48f7948时所对应的数轴上的点到eqIdc4d0f68ff72ba19ed2b303881b16b3f0所对应的点距离之和等于6

数轴上到eqIdc4d0f68ff72ba19ed2b303881b16b3f0所对应的点距离之和等于大于等于6得到所对应的坐标的范围是eqIdc029d14d3a5ed5d2bf6070f13596ce2feqIdb27f27cbb8185c1974d715ff95f8801c

所以eqIdd2a8a9f4f0d6590de86becb733bd1b6b的解集为eqId55cdf04d9b255858f8bacc7fa974fc9b.

[方法二]【最优解】:零点分段求解法

  eqId0b550ee821ee1838384835e81fc34b67时,eqIda558f6f6022d8c47c0a72af20b001932

eqId1babe83333f3486af79840208caec56f时,eqId05f3e773cec78fe965648edead00783f,解得eqIdc029d14d3a5ed5d2bf6070f13596ce2f

eqId9eadba7e0419a9a6eec9b02fae08fa24时,eqId05b8a2c246aa21bb0b22dd431a9d3083,无解;

eqIde2fb40a36a293471742ce75f6b9635b8时,eqIdb0f56857b8098efc2f1b0bdf0f483440,解得eqIdb27f27cbb8185c1974d715ff95f8801c

综上,eqId957e7a339d590a28d46ffae293f6ab56的解集为eqIdceba1be2c0c46a3de18dd9774b2e2778

2[方法一]:绝对值不等式的性质法求最小值

依题意eqId0abd3adfab8eed16e2c302b4f11fe869,即eqId4c6c0281fca3b60707ebc9b815273d53恒成立,

eqIdcb6bfac3934d9f38e1782f61924fff96

当且仅当eqIdaf8d9dcf396c086e4f8124d565311ca6时取等号,

eqId7017daed627d2e5c4a86d5dd4776c4f5,

eqIdb045108427a7c3d24c09931d6204086b

所以eqId43528d336ef67bfd016a94054d3e6babeqId1371625ec99457ff4629c0b210845f6f

解得eqIdeddb619920e68bf33294dcebc9c7c8bf.

所以eqId0a6936d370d6a238a608ca56f87198de的取值范围是eqId9fd41c938b3342b0276348da3bfe7a81.

[方法二]【最优解】:绝对值的几何意义法求最小值

eqId84db9ae994ccc022135cf13596d20147是数轴上数x表示的点到数a表示的点的距离,得eqIdd0b526ebc3d36ba3fde704eaaf9396ab,故eqIddc0ec843f970c38abe850ccb77b5e669,下同解法一.

[方法三]:分类讨论+分段函数法

eqIde9ee71d55403212e8e1613b18ad38196时,

eqId1a4f9ebfb5547589a4689d2c8d1eb751

eqId0f57e4d689bd6ed28384f6fc717ce9d2,此时eqId168dda2e1cf13a1f02bc6be729ece08f,无解.

eqIde270e5e488ded8f5eafb66f2df173692时,

eqId7a11e2617a15af6653012d83f0df380e

eqIdb5c56b643737ef0a79aa9e380eda33b8,此时,由eqId43528d336ef67bfd016a94054d3e6bab得,eqIdeddb619920e68bf33294dcebc9c7c8bf

综上,a的取值范围为eqIdeddb619920e68bf33294dcebc9c7c8bf

[方法四]:函数图象法解不等式   

由方法一求得eqId0115eb7c2b8879a67e9ef32f1cd781b9后,构造两个函数eqIdb748bc8661ab2d9be99760e30b056fabeqId2af31a8d791f28399fc13be3250136dc

eqId6beb4a2dca4897f32408f0468ba5c9c3eqId2af31a8d791f28399fc13be3250136dc

如图,两个函数的图像有且仅有一个交点eqIdd6507d54ab55257f44e189670a8a9ffc

由图易知eqIddc0ec843f970c38abe850ccb77b5e669,则eqIdeddb619920e68bf33294dcebc9c7c8bf

【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.

方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,

方法二使用零点分段求解法,适用于更广泛的情况,为最优解;

2)方法一,利用绝对值不等式的性质求得eqIdad9ef8baff847726154ae333606d519a,利用不等式恒成立的意义得到关于eqId0a6936d370d6a238a608ca56f87198de的不等式,然后利用绝对值的意义转化求解;

方法二与方法一不同的是利用绝对值的几何意义求得eqId09f86f37ec8e15846bd731ab4fcdbacd的最小值,最有简洁快速,为最优解法

方法三利用零点分区间转化为分段函数利用函数单调性求eqId09f86f37ec8e15846bd731ab4fcdbacd最小值,要注意函数eqId09f86f37ec8e15846bd731ab4fcdbacd中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;

方法四与方法一的不同在于得到函数eqId09f86f37ec8e15846bd731ab4fcdbacd的最小值后,构造关于eqId0a6936d370d6a238a608ca56f87198de的函数,利用数形结合思想求解关于eqId0a6936d370d6a238a608ca56f87198de的不等式.

2020年新课标1卷理科】

5.已知函数eqId50880e1d22a971fea0d681f0048effff

1)画出eqId51c530f4b7491b95acb8ce3eef9aa09d的图像;

2)求不等式eqIdbc3e238b1bc55e6240949c28d9561a94的解集.

【答案】(1)详解解析;(2eqId886096d43ee61531b010c42a3d06af03.

【分析】(1)根据分段讨论法,即可写出函数eqIdd8b6894e8c345a035e89ec672503a01f的解析式,作出图象;

2)作出函数eqId7479276dbd621fa9b35751c2f6c17830的图象,根据图象即可解出.

【详解】(1)因为eqId85afa615b2613e830edde9d86b620d0a,作出图象,如图所示:

2)将函数eqIdd8b6894e8c345a035e89ec672503a01f的图象向左平移eqIdbdaa19de263700a15fcf213d64a8cd57个单位,可得函数eqId7479276dbd621fa9b35751c2f6c17830的图象,如图所示:

eqId34e68f098aa970e0104f43464c8e0efc,解得eqIdb56905448a31c004f5a7a7cffec68c1f

所以不等式eqIdbc3e238b1bc55e6240949c28d9561a94的解集为eqIdce8186f400641098884e895a521ac99f

【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.

2020年新课标2卷理科】

6.已知函数eqId54eb6ad7c908f94d867f3230a07de08c.

1)当eqId8e258ab9e600435b37465092243d99f6时,求不等式eqId423314079e772f46d346caafd68a0631的解集;

2)若eqId423314079e772f46d346caafd68a0631,求a的取值范围.

【答案】(1eqId3b13009863227c42e13643cd6e4ec011eqId45ed32d54f9efd2fb20a2f393158d06a;(2eqIda46c6de06e2b9eb5e680770e548a5e0b.

【分析】(1)分别在eqIdba62d1de5fd5cd7b038603736d584df8eqId518ab466bba23578adc6a71a0b0f3d6deqId0935b0d5568370418871fa7a6c47162d三种情况下解不等式求得结果;

2)利用绝对值三角不等式可得到eqId0992d0558af5edebf98ea85d96d10edd,由此构造不等式求得结果.

【详解】(1)当eqId8e258ab9e600435b37465092243d99f6时,eqId93d2a012c1dab471f0505b2a99da494c.

eqIdba62d1de5fd5cd7b038603736d584df8时,eqId4196bdbf232b2cb0646087249c42da9b,解得:eqId1a30e748046a84cf91e0084dd694c847

eqId518ab466bba23578adc6a71a0b0f3d6d时,eqId7b903e4963eb9a1c33b505777c0ceae6,无解;

eqId0935b0d5568370418871fa7a6c47162d时,eqId0363b0db0ea5bee35cf0c2db47fb8b6c,解得:eqId1a7f8f9e3541c657267872b48128ce38

综上所述:eqId665dc334a37e61c356b636604eb0f8c3的解集为eqId3b13009863227c42e13643cd6e4ec011eqId45ed32d54f9efd2fb20a2f393158d06a.

2eqId83c8c98f84956715123f932b92b4c69d(当且仅当eqId63d42479cfca09604a6adb816821ab8c时取等号),

eqIdf12adf9d42720246e7d3509c4f9907a5,解得:eqIdc0ffcc01616043a2077c48a3dec321b0eqIdd8a671406a5442a3088a4ee1d064114a

eqId0fd73eaa3827941790b67134498ebd92的取值范围为eqIda46c6de06e2b9eb5e680770e548a5e0b.

【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.

2020年新课标3卷理科】

7.设abceqIda02d44492b51b0e08208fdc0d1707025Ra+b+c=0abc=1

1)证明:ab+bc+ca<0

2)用max{abc}表示abc中的最大值,证明:max{abc}≥eqId5263a1d78ec9ea895f3b7781fb36e008

【答案】(1)证明见解析(2)证明见解析.

【分析】(1)方法一:由eqIdc3437bf2b4a2e4875693daf90e72aba6结合不等式的性质,即可得出证明;

2)方法一:不妨设eqId822aa0c054ca67b898c0cd80b734a343,因为eqId5fc3a824f70103f7f5b05675d500fbc8,所以eqId71e7581a9b1bdf7e15be780aaaecc4a4eqId8ef2b947bd562eea117d7b3863ea4461eqId0f9cf6589a84e1b24621ea4b3189e100eqId43d4b2c6ee6d5765bf6a1a3470f96148,则eqId796f39076c84a8005f8666bac3bd7de2eqId2a8d507b9f264f7bd72cf0a6a964291a.故原不等式成立.

【详解】(1[方法一]【最优解】:通性通法

eqIda97e8aba3e6c2172e5308c5f9b492379

eqId4f850622fb333db47b0a5d72c5f14d37.

eqId2f812d421bea06d6dfaa9c89664d6d97均不为eqIdc95b6be4554f03bf496092f1acdfbb89,则eqId1e462e5ea5fdd384b2dc03cb45802ca0eqIdebba9c97cf5358b97708e86af928ba8e

[方法二]:消元法

eqId9e56f4504e0f80fd031c8b5f41832e03eqIde40dadbceb2582bdd9b6a789bb1ed9d9,则eqId071fb665cc497cfbfcc9a503434d86c3eqId71365540c8882a5d646d96b3a6b6a354eqId117d0b16ad00671e86e94a4bbca87a4eeqId1d5a1bd0f8830dca8904f64513176075,当且仅当eqId7191888571b035030e43e1ff327117b2时取等号,

eqId56667aabbe787eb1c3189d487d203e22,所以eqIde9788f8969e6699384d73cd782ac1184

[方法三]:放缩法

方式1:由题意知eqIdf01592e40f9c9db0bf3cceb585a2b9ddeqIddbc327cd1318a328d8b4043fa9371ab9eqIda30f286d437de81a191330360296f771eqId52303b6aeea231b6e6a5248b04aee9a0,又eqId868d4387ce4a0e07093a4f3beef8d29eeqId65ecb5a07110fbafa172202c0029526deqId635ca8fec38c8de0984d1add7eceb16beqId9919b231a7b4a8293bb451316aa77818,故结论得证.

方式2:因为eqId9e56f4504e0f80fd031c8b5f41832e03

所以eqIdbc8beea81c8c8cd7476fb9f374cd44cd

eqId318729e4ec3299fe9ef9defde6b8187f

eqId83bb5485a3548132cc78df0173e07bfc

eqIdf1ad09f0ff0e42dcc881c3bdf432cc93,当且仅当eqId7191888571b035030e43e1ff327117b2时取等号,

eqId56667aabbe787eb1c3189d487d203e22,所以eqIde9788f8969e6699384d73cd782ac1184

[方法四]:

因为eqId5fc3a824f70103f7f5b05675d500fbc8,所以abc必有两个负数和一个正数,

不妨设eqId78d74464df60c2eace52fbe1ef134a5ceqId4c42c1dcb3288c660ec1a94430cefd3aeqId23263c5b1cd04a1a2c22dd50242b95ff.

[方法五]:利用函数的性质

方式1eqId41cbf29b998994e795ecd2161d1538cc,令eqId9e28c1c397d8cceedc61144851f9801f

二次函数对应的图像开口向下,又eqId56667aabbe787eb1c3189d487d203e22,所以eqId20849c00c47cbdc43f18d53341b6c4e5

判别式eqIdccc4aa217eda35bac6b7d5f3e6c5c95d,无根,

所以eqId5cf7223e653f612579145e8bcf1913af,即eqIde9788f8969e6699384d73cd782ac1184

方式2:设eqId53de41f17350d2be7cd99f294cfd14f7

eqId09f86f37ec8e15846bd731ab4fcdbacdabc三个零点,若eqId963ec8d745bc2eba95b0867c624e09fa

eqId09f86f37ec8e15846bd731ab4fcdbacdR上的增函数,不可能有三个零点,

所以eqIde9788f8969e6699384d73cd782ac1184

2[方法一]【最优解】:通性通法

不妨设eqId822aa0c054ca67b898c0cd80b734a343,因为eqId5fc3a824f70103f7f5b05675d500fbc8,所以eqId71e7581a9b1bdf7e15be780aaaecc4a4eqId8ef2b947bd562eea117d7b3863ea4461eqId0f9cf6589a84e1b24621ea4b3189e100eqId43d4b2c6ee6d5765bf6a1a3470f96148

eqId63ff47e9845ce910a81bb95b501db050.故原不等式成立.

[方法二]:

不妨设eqId822aa0c054ca67b898c0cd80b734a343,因为eqId5fc3a824f70103f7f5b05675d500fbc8,所以eqId94440d3e4c073f94f2b266ff99d50e74,且eqId27a4f21269555c0a8b4b837548b8fd21

则关于x的方程eqId865dd5689ac30fcf480dfbb622a978f4有两根,其判别式eqIde1bfa5af8218c97a9ee663ea19801946,即eqId2a8d507b9f264f7bd72cf0a6a964291a

故原不等式成立.

[方法三]:

不妨设eqId822aa0c054ca67b898c0cd80b734a343,则eqId71e7581a9b1bdf7e15be780aaaecc4a4eqId6fa3657aadb61e6deeba61b591edbe5aeqId655624ce0dd1d992c2cf8ecda2ade8d7eqIdcb7575d7b4308c1384a4f032ba7155ffeqId991e93342930b42f1e30ae5335224e96,关于c的方程有解,判别式eqId7953ff48e0fb223d73270db9b3b44c42,则eqId63ff47e9845ce910a81bb95b501db050.故原不等式成立.

[方法四]:反证法

假设eqId43babee61ced50f043b16c347c981efd,不妨令eqId705406c987c08735c370e7e428f9d962,则eqId7d76d651b9b3261bcaa0f8a75222cc40eqId716bdd1d61b919dca656209c3b545f4e,又eqId56841bbec39cbd67f085dc501e4aa681,矛盾,故假设不成立.即eqId739184150170fcdf6ed5666006de69e8,命题得证.

【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出.

2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;

方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.

 

试卷第1页,共3